WHI-P154 enhances the chemotherapeutic effect of anticancer agents in ABCG2-overexpressing cells
نویسندگان
چکیده
ATP-binding cassette (ABC) transmembrane proteins evidently decrease the intracellular accumulation of substrate chemotherapeutic drugs by extruding them against a concentration gradient, thereby inducing drug resistance. Here we reported the effect of WHI-P154, an irreversible inhibitor of Janus kinase 3 and epidermal growth factor receptor tyrosine kinases, on reversing ABC transporters-mediated drug resistance. We found that WHI-P154 significantly enhanced the sensitivity of ABCG2-overexpressing cells to its substrates. WHI-P154 moderately sensitized ABCB1-overexpressing KB-C2 cells to its substrates whereas showed no sensitizing effect on ABCC1-, ABCC2 or ABCC10-mediated drug resistance. Moreover, WHI-P154 produced a significant increase in the intracellular accumulation of [³H]-mitoxantrone in ABCG2-overexpressing cells. The expression levels nor the localization of the ABCG2 protein was altered after treatment of ABCG2-overexpressing cells with WHI-P154. Further studies indicated that WHI-P154 enhanced the ATPase activity of ABCG2 at low concentrations (<10 μM). Additionally, a docking model predicted the binding conformation of WHI-P154 within the transmembrane region of homology-modeled human ABCG2 transporter. Collectively, these findings highlighted WHI-P154 could significantly reverse ABCG2-mediated multidrug drug resistance by directly blocking the efflux function.
منابع مشابه
Effect of ceritinib (LDK378) on enhancement of chemotherapeutic agents in ABCB1 and ABCG2 overexpressing cells in vitro and in vivo.
Multidrug resistance (MDR) is the leading cause of treatment failure in cancer chemotherapy. The overexpression of ATP-binding cassette (ABC) transporters, particularly ABCB1, ABCC1 and ABCG2, play a key role in mediating MDR by pumping anticancer drugs out from cancer cells. Ceritinib (LDK378) is a second-generation tyrosine kinase inhibitor of anaplastic lymphoma kinase (ALK) currently in pha...
متن کاملNilotinib enhances the efficacy of conventional chemotherapeutic drugs in CD34⁺CD38⁻ stem cells and ABC transporter overexpressing leukemia cells.
Incomplete chemotherapeutic eradication of leukemic CD34⁺CD38⁻ stem cells is likely to result in disease relapse. The purpose of this study was to evaluate the effect of nilotinib on eradicating leukemia stem cells and enhancing the efficacy of chemotherapeutic agents. Our results showed that ABCB1 and ABCG2 were preferentially expressed in leukemic CD34⁺CD38⁻ cells. Nilotinib significantly enh...
متن کاملDacomitinib potentiates the efficacy of conventional chemotherapeutic agents via inhibiting the drug efflux function of ABCG2 in vitro and in vivo
BACKGROUND ATP-binding cassette subfamily G member 2 (ABCG2), a member of the ABC transporter superfamily proteins, mediates multidrug resistance (MDR) by transporting substrate anticancer drugs out of cancer cells and decreasing their intracellular accumulation. MDR is a major hurdle to successful chemotherapy. A logical approach to overcome MDR is to inhibit the transporter. However, no safe ...
متن کاملCEP-33779 antagonizes ATP-binding cassette subfamily B member 1 mediated multidrug resistance by inhibiting its transport function.
The overexpression of ATP-binding cassette (ABC) transporters often leads to the development of multidrug resistance (MDR), which is the major factor contributing to the failure of chemotherapy. The objective of this study was to investigate the enhancement of CEP-33779, a small-molecule inhibitor of Janus kinase 2 (JAK2), on the efficacy of conventional chemotherapeutic agents in MDR cells wit...
متن کاملRepositioning of Tyrosine Kinase Inhibitors as Antagonists of ATP-Binding Cassette Transporters in Anticancer Drug Resistance
The phenomenon of multidrug resistance (MDR) has attenuated the efficacy of anticancer drugs and the possibility of successful cancer chemotherapy. ATP-binding cassette (ABC) transporters play an essential role in mediating MDR in cancer cells by increasing efflux of drugs from cancer cells, hence reducing the intracellular accumulation of chemotherapeutic drugs. Interestingly, small-molecule t...
متن کامل